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Exercise 1.2.9

Consider a thin one-dimensional rod without sources of thermal energy whose lateral surface area
is not insulated.

(a) Assume that the heat energy flowing out of the lateral sides per unit surface area per unit
time is w(x, t). Derive the partial differential equation for the temperature u(x, t).

(b) Assume that w(x, t) is proportional to the temperature difference between the rod u(x, t)
and a known outside temperature γ(x, t). Derive

cρ
∂u

∂t
=

∂

∂x

(
K0

∂u

∂x

)
− P

A
[u(x, t)− γ(x, t)]h(x), (1.2.15)

where h(x) is a positive x-dependent proportionality, P is the lateral perimeter, and A is
the cross-sectional area.

(c) Compare (1.2.15) with the equation for a one-dimensional rod whose lateral surfaces are
insulated, but with heat sources.

(d) Specialize (1.2.15) to a rod of circular cross section with constant thermal properties and 0°

outside temperature.

(e) Consider the assumptions in part (d). Suppose that the temperature in the rod is uniform
[i.e., u(x, t) = u(t)]. Determine u(t) if initially u(0) = u0.

Solution

Part (a)

The law of conservation of energy states that energy is neither created nor destroyed. If some
amount of thermal energy enters the left side of a rod at x = a, then that same amount must exit
the right side of it at x = b for the temperature to remain the same. If more (less) thermal energy
enters at x = a than exits at x = b, then the amount of thermal energy in the rod will change,
leading to an increase (decrease) in its temperature. The mathematical expression for this idea,
an energy balance, is as follows.

rate of thermal energy in− rate of thermal energy out = rate of energy accumulation

The loss of thermal energy from the lateral sides will be included on the left side as one of the
terms for “rate of thermal energy out.” Since w(x, t) is the rate of heat loss per unit surface area,
it has to be integrated over the rod’s surface area to get the total. The heat flux is defined to be
the rate that thermal energy flows through the rod per unit area, and we denote it by φ = φ(x, t).
If we let U represent the amount of thermal energy of the rod, then the energy balance over it is

A(a)φ(a, t)−A(b)φ(b, t)−
ˆ

rod

w(x, t) dA =
dU

dt

∣∣∣∣
rod

.

The surface area differential can be written in terms of the perimeter P (x) as dA = P (x) dx. It is
assumed here that the rod has a perimeter that varies with x and that is small enough such that
thermal energy essentially flows in the x-direction.

A(a)φ(a, t)−A(b)φ(b, t)−
ˆ b

a
w(x, t)P (x) dx =

dU

dt

∣∣∣∣
rod
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Figure 1: This is a schematic of the rod in question. It has variable cross-sectional area and lateral
perimeter and physical properties. The heat flow into the left side at x = a is the cross-sectional
area there A(a) times φ(a, t), and the heat flow out of the right side at x = b is the cross-sectional
area there A(b) times φ(b, t).

Factor a minus sign from the two terms containing φ.

−[A(b)φ(b, t)−A(a)φ(a, t)]−
ˆ b

a
w(x, t)P (x) dx =

dU

dt

∣∣∣∣
rod

By the fundamental theorem of calculus, the term in square brackets can be written as an integral.

−
ˆ b

a

∂

∂x
[A(x)φ(x, t)] dx−

ˆ b

a
w(x, t)P (x) dx =

dU

dt

∣∣∣∣
rod

Combine the two integrals on the left side.

ˆ b

a

{
− ∂

∂x
[A(x)φ(x, t)]− w(x, t)P (x)

}
dx =

dU

dt

∣∣∣∣
rod

The thermal energy in the rod U is equal to the mass m times specific heat c times temperature
u(x, t). As the rod is nonuniform, the total thermal energy is obtained by integrating over the
rod’s mass. ˆ b

a

{
− ∂

∂x
[A(x)φ(x, t)]− w(x, t)P (x)

}
dx =

d

dt

ˆ

rod

c(x)u(x, t) dm

The mass is density times volume, so the differential is dm = ρ(x) dV . The volume differential
itself can be written in terms of the cross-sectional area A(x) as dV = A(x) dx.

ˆ b

a

{
− ∂

∂x
[A(x)φ(x, t)]− w(x, t)P (x)

}
dx =

d

dt

ˆ b

a
ρ(x)c(x)u(x, t)A(x) dx

Bring the derivative inside the integral on the right side.

ˆ b

a

{
− ∂

∂x
[A(x)φ(x, t)]− w(x, t)P (x)

}
dx =

ˆ b

a
ρ(x)c(x)

∂u

∂t
A(x) dx

The two integrals are equal over the same interval of x, so the integrands must be equal.

− ∂

∂x
[A(x)φ(x, t)]− w(x, t)P (x) = ρ(x)c(x)

∂u

∂t
A(x)
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According to Fourier’s law of heat conduction, the heat flux is proportional to the temperature
gradient.

φ = −K0(x)
∂u

∂x
,

where K0(x) is a proportionality constant known as the thermal conductivity. It varies as a
function of x because the rod is nonuniform. As a result, the energy balance becomes an equation
solely for the temperature.

− ∂

∂x

[
−A(x)K0(x)

∂u

∂x

]
− w(x, t)P (x) = ρ(x)c(x)

∂u

∂t
A(x)

Therefore, after dividing both sides by A(x), the partial differential equation for the temperature
in a nonuniform rod with cross-sectional area and lateral perimeter that vary with x is

ρ(x)c(x)
∂u

∂t
=

1

A(x)

∂

∂x

[
A(x)K0(x)

∂u

∂x

]
− P (x)

A(x)
w(x, t).

Part (b)

Assume that w(x, t) is proportional to the temperature difference between the rod u(x, t) and a
known outside temperature γ(x, t). This is Newton’s law of cooling.

w(x, t) ∝ u(x, t)− γ(x, t)

This proportionality can be changed to an equation by introducing a proportionality function
h(x). It is not a constant because the rod is nonuniform.

w(x, t) = h(x)[u(x, t)− γ(x, t)]

Substitute this formula for w(x, t) into the PDE derived in part (a).

ρ(x)c(x)
∂u

∂t
=

1

A(x)

∂

∂x

[
A(x)K0(x)

∂u

∂x

]
− P (x)

A(x)
h(x)[u(x, t)− γ(x, t)]

Assuming now that the rod has constant cross-sectional area A and constant lateral perimeter P
and constant mass density ρ and constant specific heat c and constant thermal conductivity K0,
we therefore obtain

cρ
∂u

∂t
=

∂

∂x

(
K0

∂u

∂x

)
− P

A
[u(x, t)− γ(x, t)]h(x).

Part (c)

Comparing this to the heat equation for an insulated rod with a heat source,

cρ
∂u

∂t
=

∂

∂x

(
K0

∂u

∂x

)
+Q,

we see that a rod without insulation satisfies the same equation. Rather than a heat source, the
lack of insulation is effectively a heat sink because energy is lost to the environment in proportion
to the temperature difference u(x, t)− γ(x, t), the ease with which energy transfers to the
environment h(x), and the surface-area-to-volume ratio P/A (multiply the numerator and
denominator by the rod length).
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Part (d)

Making the additional assumptions that γ(x, t) = 0 and A = πr2 and P = 2πr and h(x) is
constant, the PDE at the end of part (b) simplifies to

cρ
∂u

∂t
= K0

∂2u

∂x2
− 2h

r
u(x, t).

Part (e)

Making the additional assumption that u is the same throughout the rod, that is, u = u(t), the
second derivative with respect to x vanishes.

cρ
∂u

∂t
= K0

∂2u

∂x2︸ ︷︷ ︸
= 0

−2h

r
u(t)

Consequently, an ordinary differential equation emerges.

cρ
du

dt
= −2h

r
u(t)

Divide both sides by cρu(t).
1

u

du

dt
= − 2h

cρr

The left side can be written as the derivative of lnu.

d

dt
(lnu) = − 2h

cρr

Integrate both sides with respect to t.

lnu = − 2h

cρr
t+ C

Exponentiate both sides.

u(t) = exp

(
− 2h

cρr
t+ C

)
= exp(C) exp

(
− 2h

cρr
t

)
Introduce a new constant of integration B.

= B exp

(
− 2h

cρr
t

)
Apply the prescribed initial condition u(0) = u0 to determine B.

u(0) = B = u0

Therefore, the temperature of a uniform cylindrical rod falls exponentially from u0 to 0°.

u(t) = u0 exp

(
− 2h

cρr
t

)
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